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Abstract

Efficient and cost-effective methods are needed for delineating sub-field productivity zones to
improve soil and crop site-specific management. This investigation was conducted to answer the
question of whether apparent soil electrical conductivity JE0d elevation could be used to delineate
productivity zones (SPZ) for claypan sail fields that would agree with productivity zones delineated
from yield map data (YPZ). Ten and seven years of combine-monitored yield maps were available for
two Missouri claypan soil fields, designated Field 1 and Field 2, respectively. The fields were generally
cropped in corn and soybean. Soil £@ata were collected with a non-contact, electromagnetic
induction-based Egsensor (Geonics EM38) and a coulter-based sensor (Veris model 3100). Elevation
data were collected using a real-time kinematic GPS. Unsupervised urmans clustering was
independently used both on yield data to delineate three YPZ and on combinationg an@6r
elevation data to delineate three SPZ. Outcomes of YPZ and SPZ were matched and agreement
calculated with an overall accuracy statistic and a statistical index called the Kappa coefficient. Best
performing combinations of E{and elevation variables gave 60—-70% agreement between YPZ and
SPZ. We consider this level of agreement promising, especially considering that there were many
other yield-limiting factors unrelated to E@nd elevation. Generally, multiple variables of Fhd

Abbreviations:CV, coefficient of variation; Eg apparent profile soil electrical conductivity; E&, 0-30 cm
depth EG using a coulter-based sensor; £§ 0-100cm depth ECusing a coulter-based sensor; £&,
0-150cm depth ELusing a electromagnetic-based sensor; MZA, Management Zone Analyst software; S.D.,
standard deviation; SPZ, E@nd/or elevation-based productivity zones; YPZ, yield productivity zones
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elevation were better than a single variable for generating SPZ. The specific combinations of EC
and/or elevation variables that gave highest agreement between YPZ and SPZ were field specific.
Based on these findings, we conclude ,E@d elevation measurements can be reliably used for
creating productivity zones on claypan soil fields.

Published by Elsevier B.V.

Keywords: Management zones; Precision agriculture; Sensor; Site-specific crop management; Spatial pattern

1. Introduction

Somewhere between representing a single field as a single unit and representing the field
as high-resolution continuous data lies the conceptariagement zonddlanaging by spa-
tial variation in soil and crop factors within the framework of management zones is intuitive
for producers becauseitis a conceptthat allows them to visualize operations merely as break-
ing up large fields into smaller field&itchen et al., 200 Yet, the phrase “management
zone” can imply multiple meanings and applications. Most commonly, the phrase is used
to identify sub-field areas that vary in some management input or practice. However, if the
same decision rule or algorithm is applied over an entire field and the zone is just a classified
representation of this rule, minimal value may result. A more advanced and valuable ap-
proach is where each zone represents a unique algorithm or response curve. For example, the
response of cornyield to N fertilizer may be differentin a zone having a certain combination
of topographic and soil characteristics than in some other zone. “Management zones” have
also been usedto delineate areas of a field for assessing the effects of soil and biotic factors on
yield. More accurately, these could be referred to as “analysis zones.” A derivation of this ap-
proach has been used to identify unique areas within fields for crop growth model simulation
(Fraisse etal., 200)bThus, the phrase “management zone” is somewhat ambiguous without
including additional information that clearly specifies the intended goal in sub-dividing the
field.

Methods for delineating management zones vary widely in the information used as well
as the techniques for creating the zone boundaries. Some examples include hand drawing
polygons on yield maps and/or bare soil photéleing et al., 200)) classification of soll
or digital elevation dataMacMillan et al., 1998; van Alphen and Stoorvogel, 1998; Franzen
et al., 2002, mulitvariate cluster analysis using yield map ddtark, 1998; Boydell and
McBratney, 1999; Jaynes et al., 2003; Ping and Dobermann,)2808 and landscape
properties Eraisse et al., 2001a; Burrough et al., 1992; McBratney and DeGruijter, 1992;
Odeh et al., 1992 or remotely sensed image&hn et al., 1999; Boydell and McBratney,
1999, and identification of yield stability using temporal variancerk and Stafford, 1997;
Whelan and McBratney, 2000

A specific application of management zones is identification of areas of similar pro-
ductivity potential, where the zones might more accurately be called “productivity zones”
or "yield zones”. Producer interest in identifying productivity zones is due to the fact that
some key management decisions are dependent on reliable estimates of expected yield.
A few examples include N fertilizer rate, seeding rate, and replacement of soil nutrients
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based on crop removal (sometimes referred to as “maintenance” fertilization). In rainfed
agriculture settings, productivity zones have been primarily related to accumulation and
movement of water as affected by soil and the landscifaeiillan et al., 1998; Jaynes

et al., 2003. Complicating productivity zone identification in these settings are year-to-
year climate variations. Highly productive areas of a field during “dry” years can be the
low producing areas of the same field in “wet” yea@olvin et al., 1997; Sudduth et al.,
1997). Productivity zones have most commonly been derived from an analysis of combine
yield map dataBoydell and McBratney, 1999; Jaynes et al., 2003; Ping and Dobermann,
2003. Sawyer (1994noted that if an analysis averages yield maps across wet and dry
years, then the procedure may neutralize information needed to better understand the in-
teraction between soil/landscape properties and climate and the resulting effects on crop
production. Static soil and landscape factors have also been used to derive productivity
zones McBratney and DeGruijter, 1992; Odeh et al., 1992; Fraisse et al., 2004w en
compared to the use of multiple years yield maps, deriving productivity zones from soil
and landscape information (which can be obtained from a single data collection event)
represents a tremendous time savings and is, therefore, appealing to pro#itciien(

et al., 2002. Use of soil and landscape information to create productivity zones does
assume a reasonable understanding of the agronomic effects of the soil and landscape
information.

Apparent profile soil electrical conductivity (Eoprovides an indirect measure of soll
physical and chemical propertieBI¢Neill, 1992; Rhoades et al., 199%roperties that
can have a dominant influence on plant growth and yiéld/ites et al., 1995; Lund et
al., 2001; Zhang and Taylor, 2001; Kitchen et al., 20@3haracterization of soil vari-
ability can be improved by utilizing E£measurements obtained from different types
of EC4 sensors $udduth et al., this issyieFor claypan soils of the U.S. Midwest, EC
has been found to be highly correlated with topsoil thickness (i.e., depth to the Bt hori-
zon) (Doolittle et al., 1994; Sudduth et al., 200TThis soil property causes variation
in infiltration and water storage characteristidarfiison et al., 19§8&nd is highly re-
lated to yield variation in crop growth years with average and below average precipita-
tion (Kitchen et al., 1999 Previous analyses attempting to account for within-field yield
variation were improved by including elevation with E@easurementK{tchen et al.,

2003.

The existence of a significant relationship between mappeddB@ yield information
advances the question of whetherguld be the foundation for delineating productivity
zones. An assessment of classified yield-mapped data obtained over multiple years for a
few selected fields could help develop concepts of productivity zone delineation, that could
then be extended to other fields, where;E0uld quickly be measured, but have no his-
tory of yield monitoring. The objective of this research was to investigate the effectiveness
of using soil EG measurements (either alone or multiple Heasurements taken from
different sensors) for delineating productivity zones for claypan soils. Because of recent
interest in using classification methods for creating “management zones”, we were partic-
ularly interested in addressing this objective by comparing zones derived from classified
yield data with zones classified from E@easurements. A sub-objective was to deter-
mine if inclusion of relative field elevation along with E€ould improve productivity zone
delineation.
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Fig. 1. Research fields located in north-central Missouri.

2. Materials and methods
2.1. Sites description

Research sites were two claypan soil fields [Field 1 (latitude 39.2297, longitude
—92.1169; 28ha), and Field 2 (latitude 39.2346, longitud#?.1469; 13 ha)] approxi-
mately 2 km apart near the town of Centralia in north-central Missdtig. (1). Claypan
soils occupy about 4 million ha in Missouri and lllinois and are associated with Major Land
Resource Area 1130il Survey Laboratory Staff, 1992Clay content in the argillic hori-
zon is usually >500 g kgt and is comprised of smectitic (high shrink—swell) clay minerals.
These soils have a unique hydrology with slow water flow in the soil matrix of the clay layer
when wet (i.e., winter and spring), but rapid preferential flow through cracks after profile
drying (i.e., late summer and early faljgmison et al., 1968

Ten growing seasons (1993-2002) were evaluated for Field 1 and seven (1996-2002)
growing seasons were evaluated for Field 2. The fields were cropped in a corn—soybean
rotation, exceptions being grain sorghum (milo) grown 1 year on Field 1 and 2 consecutive
years of soybean on Field 2. Field 1 was managed with minimum tillage (chisel plow and
field cultivator) and Field 2 was managed with no-tillage. Growing-season precipitation
during the years of this study is shown compared to the 58-year average (1940-1998) in
Table 1

2.2. Soil EG, elevation, and yield data collection

Soil EGy was measured in October 1999 using the Veris model 3100 sensor cart system
manufactured by Veris Technologies of Salina, Kantamd et al., 1999and the EM38
manufactured by Geonics Limited, Mississauga, Ont., Can@éarics Limited, 1998"

The Veris sensor identifies soil variability by directly sensing,ESs the cart is pulled
through the field, a pair of coulter electrodes transmit an electrical currentinto the soil, while
two other pairs of coulter electrodes measure the voltage change, one pair for a “shallow”
EC, reading (0-30cm, designated here as Effand one pair for a “deep” ECreading
(0-100cm, designated here as&f). The EM38 is a lightweight bar approximately 1

1 Mention of trade names or commercial products is solely for the purpose of providing specific information
and does not imply recommendation or endorsement by the United States Department of Agriculture.
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Table 1
Monthly growing-season precipitation (cm) for the fields in this study (1993-2002) compared to the 58-year
average

Year April May June July August September
1993 145 86 142 162 132 360
1994 264 26 89 10 39 6.0
1995 137 257 173 74 168 73
1996 62 174 88 7.0 122 8.6
1997 82 126 99 40 91 56
1998 103 5.5 240 149 42 142
1999 175 86 140 09 34 31
2000 22 8.6 171 71 223 4.7
2001 115 185 154 89 21 50
2002 139 233 53 54 8.6 15
58-Year average .8 108 108 9.0 89 9.2

m in length and includes calibration controls and a digital readout, fe&@€dings were
output through a port and recorded on a computer. The EM38 was attached to a wheeled
cart (Sudduth et al., 20Q1and operated in the vertical dipole mode, providing an effective
measurement depth of 0—150 cm (designated here asFCA comparison of these two
sensors over a range of soil types is provided elsewhere in this iSsidel(fth et al., this
issug.

EC, data were collected on transects approximately 10 m apart on 1s intervals, which
corresponded to a measurement about every 2—3 m along the transectsy AleBSure-
ments were georeferenced using DGPS receivers. Other details of the procedures used for
EC, collection have been previously givei{chen et al., 2003; Sudduth et al., 200BC,
readings were kriged following generally accepted geostatistical procedures using ArcGIS
Geospatial Analyst. Data were investigated for trend and anisotropy. In datasets where
underlying trends existed, universal kriging was used, otherwise, simple kriging was cho-
sen. Anisotropic models were selected when non-stationarity was detected by rotating the
lag azimuth. Best performing semi-variogram models were identified by eye and used for
block kriging. A final 20 mx 10 m grid cell size was chosen because it reflects the scale
of variability associated with the EGneasurements and the yield monitoring system data
(discussed later). Elevation data was collected simultaneously with thel&& using a
real-time kinematic GPS (vertical accuracy approximately 3-5cm). Elevation data were
block kriged to the same 10 m grid as Edata.

Combines equipped with commercially-available yield sensing systems were used to
obtain grain yield. Yield data files were processed by removing individual data points
where data were unreliable. Specifically, points were removed due to any one or a com-
bination of the following factors: significant positional errors, abrupt changes in operating
speed, significant ramping of grain flow when entering and leaving the crop, a partial swath
width of crop entering the combine, and instantaneous yield values outside reasonable
bounds. Precise threshold values for rejection were dependent upon the field, crop type,
and individual combine/yield monitoring system used to collect each dataset. Using the
previously described geostatistical procedures, appropriate semi-variogram models and pa-
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rameters were used to krige the yield data to the same 10 m grid asrCelevation

data. Thus, all analyses were conducted on the same 10 m grid. Excluded on Field 1 were
some small uncropped areas (weather station and ground water monitoring well nests) as
well as four <1 ha areas used for fertility response studies on the north-west portion of
the field.

Each site-year was normalized by dividing the yield from each cell by the overall average
yield from all the cells within that site-year. This field-average-normalized yield had a
distribution with a mean of one and a theoretical range of zero to infinity, although in practice
values ranged between 0.1 and 2.6. This normalizing procedure allowed comparison and
averaging across variable climate and crop types.

2.3. Data processing and analysis

We desired to develop a quantitative procedure to compare the similarity of productivity
management zone maps derived from two unique and independently classed data types; the
first being yield productivity zones (YPZ) from mapped yield data, and the second being soil
EC, and elevation-based productivity zones (SPZ). Such a comparison of independently
classed maps to determine agreement is common in remote sensing stedgen( 1996
Reasonable agreementwould provide arationale for using the more easily obtained data(i.e.,
EC, and elevation) to act as a surrogate for data that was more difficult, time-consuming,
or expensive to obtain (i.e., yield).

A three-step proces$ig. 2) was employed for developing and comparing YPZ maps
to SPZ maps. In Step 1, YPZ were identified using the average of all years’ yield, and
by the average after grouping years into “deficit”, “optimal” or “excessive” precipitation
years (explained in detail in Secti@). Delineation into YPZ was accomplished using a
software program called Management Zone Analyst (MZ&idgen etal.,2004MZA uses
a fuzzyc-means unsupervised clustering algorithm. Fuzeyeans (also known as fuzky
means) uses a weighting exponent to control the degree to which membership sharing occurs
between classeBézdek, 198} Fuzzyc-means classification has been used for classifying
soil and landscape datBirrough et al., 1992; McBratney and DeGruijter, 1992; Odeh et
al., 1993 and yield datal(ark and Stafford, 1997; Lark, 1998Specific justification for
the appropriateness in using this algorithm for classification of soil information has been
documented@deh et al., 1992 MZA requires specifications of a humber of clustering
parameters. Settings used in MZA for our analyses were as follows: Euclidean measure of
similarity for univariate clustering and Mahalanobis measure of similarity for mulitvariate
clustering; fuzziness exponent=1.3; maximum number of iterations =300; convergence
criterion =0.0001; number of zones to extract = 3. Creation of only three zones was selected
because our previous research on claypan fields found that little was gained by using more
than three or four productivity zoneBr@isse et al., 200)aResearch on different soils also
recommended the use of three to four classificatiéien{ing et al., 2000; MacMillan et
al., 1999.

In Step 2, 19 different combinations of the three ;g@easurements and elevation
(Table 9 were used as clustering variables within MZA to create maps having three SPZ.
Ratios of EG readings from the different sensors were included since they helped to ex-
plain field level variability in other researciC¢rwin et al., 1999 Parameter settings for
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Fig. 2. Flowchart of analysis procedures.
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Fig. 3. Field 1 yearly-average-normalized yield maps over 10 years. Small areas excluded (shown as white blocks)
were uncropped areas (weather station and ground water monitoring well nests) or four <1 ha areas used for fertility
response studies on the north-west portion of the field.
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Table 2
Listing of the soil EC and elevation variable combinations used in unsupervised clustering to delineate potential
productivity zones

Variables used in clustering

1 ECa-sh

2 Ecﬁ-dp

3 ECaem

4 Elevation

5 ECasHECadp

6 ECasECaem

! ECaap/ECaem

8 ECa-sh €elevation

9 EGa-gp elevation
10 EG-em €levation
1 EGa-sh ECadp
12 EGi-sECa.dp, elevation
13 EGa-sHECa-em €elevation
14 EGa-dy/ECa-em €levation
15 EGash ECa-dp ECacem
16 ECﬁ-sHECa-dp ECaem
17 EGa-sh ECa.dp €levation
18 EGy.<ECa.qp elevation
19 EGi-sh ECa-dp, ECa-em €levation

clustering within MZA were the same as those described for yield. In Step 3, on a cell-by-cell
basis YPZ maps (Step 1) were compared to SPZ maps (Step 2).

Two measures of classification agreement were used: (1) a simple overall accuracy statis-
tic, and (2) a statistical index called the Kappa coefficidahéen, 19960verall accuracy
was computed by dividing the number of correctly matched cells by the total number of
cells in the dataset, yielding the fraction of total cells that are identically classified. The
Kappa coefficient of agreement, a common index used for accuracy assessment in remote
sensing, measures pair-wise agreement between the margin cells in a cross-classification
contingency table, then correcting for chance agreement. As an example, a Kappa coefficient
value of 0.82 would imply that the classification process was avoiding 82% of the errors
that a completely random classification would generate. Kappa and overall accuracy values
are greatest when spatial agreement of the two classifications is maximized. To objectively
rank classification pairs, it was necessary to consider all possible combinations of YPZ
paired to SPZ. Only the five SPZ outcomes that resulted in the highest Kappa coefficient
were reported.

3. Results

The goal of this study was to test if E@nd elevation measurements could effectively
be used to generate SPZ that agree with YPZ for claypan soils. The steps outltiedin
also provide a structure for presenting the results. In Step 1, YPZ were derived from the
multiple years of yield data using unsupervised clustering. Since these zones are based on
empirical data, they become the “reference”. In Step 2, the same unsupervised clustering
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procedure was used on combinations of;E@d elevation measurements to derive SPZ.
In Step 3, the zones from the first two steps were compared by calculating measures of
agreement.

3.1. Summary of yield information for two claypan soil fields

A total of 10 (1993-2002) and 7 (1996-2002) crop years of yield map information were
available for Field 1Fig. 3) and Field 2 Fig. 4), respectively. Yield descriptive statistics by
site-year are shown iflable 3 The fields have generally been in a corn—soybean rotation.
Exceptions were that grain sorghum replaced corn in 1995 on Field 1 and there were 2
years of continuous soybean (1998 and 1999) on Field 2. Since grain sorghum growth and
physiology is comparable to corn, this dataset was grouped with corn for interpretation.

Within a field, variability in corn yield was generally higher than that of soybean yield,
as indicated by coefficients of variation (CVable 3. We attribute the lower variability
in soybean yield on claypan soil fields to this crop’s characteristic indeterminate flowering
and its resultant ability to respond to water deficiency stress. Past research has shown corn
on claypan soils to be over five times more sensitive to water deficiency than soybean
(Thompson et al., 1991

Yield data was normalized to the field average of each year to allow for year-to-year
and field-to-field comparisons (normalized minimum and maximum shovfalre 3.
Although the magnitude of yield variation seemed to be crop specific, examination of
normalized yield maps by yedFigs. 3 and Jvisually showed similar spatial yield patterns
across many years. Because of this similarity, along with our intent to create YPZ applicable
to multiple grain crops, we decided to include data from all crops in deriving the zones.
The average yield CV for Field 1 corn was 14% and for soybean was 10%. Yield variability
was considerably higher for Field 2 with average CV values of 29 and 20% for corn and
soybean, respectively. We attribute these differences between fields to the degree and spatial
extent of soil variation (explained more fully later).

3.2. Creating productivity zones with yield data (Step 1)

For Field 1, the 10-year average of normalized mean yidkig. Ga) was first used
for generating YPZ. A second approach was to include the standard deviation (S.D.) of
normalized mean yield over the 10 yeaFiy, 5) as a cluster variable along with the 10-
year average yield. The intent of this second approach was to see if zones derived from EC
and elevation matched better when YPZ included a measure of temporal yield variation.

An alternative approach for taking into account temporal variability was also tested.
Examination of the Field 1 yield maps over the 10 ye&ig.(3) indicated some landscape
positions were very sensitive to the amount of growing-season rainfall. In years with average
or below average precipitation, yield on the eroded back-slope position was depressed
because of water deficiency stress. For these same years, yield was generally highest at the
foot-slope position, which for this field also acts as a drainage channel for surface runoff.
In wet years, the reverse was found. The foot-slope was depressed in yield because of
excessive water and the side-slope yielded above average. This “flip-flop” of grain yield in
humid environments has been noted by oth€al\(in et al., 1997; Sudduth et al., 1997



Table 3

Descriptive statistics of yield data over 10 years for Field 1 and 7 years for Field 2

Field Crop Year Mean Minimum Maximum Normalized Normalized S.D. CV (%)

(kgha'l) (kg ha't) (kgha'l) minimum maximum (kgha't)

Field 1 Corn 1993 7348 4267 10330 0.58 141 785 11
Corn 1997 7109 3030 9877 0.43 1.40 948 13
Corn 1999 2591 971 5704 0.37 2.20 568 22
Corn 2001 6103 3043 8215 0.50 1.35 680 11
Grain sorghum 1995 5039 2618 6852 0.52 1.36 613 12
Soybean 1994 1626 945 3395 0.58 2.09 291 18
Soybean 1996 3069 1733 3565 0.56 1.16 299 6
Soybean 1998 2107 1330 2604 0.63 1.24 167 8
Soybean 2000 2600 1547 3326 0.60 1.28 231 9
Soybean 2002 2012 760 3034 0.60 1.28 294 15

Field 2 Corn 1997 6402 739 12343 0.12 1.93 2252 35
Corn 2000 8898 4129 10879 0.46 1.22 1043 12
Corn 2002 3280 584 8582 0.18 2.62 1264 39
Soybean 1996 3029 435 6178 0.14 2.04 597 20
Soybean 1998 2497 1110 3244 0.44 1.30 341 14
Soybean 1999 1403 3117 282 0.20 2.22 471 34
Soybean 2001 2453 758 3378 0.31 1.38 345 14
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We hypothesized that these two sensitive landscape positions could be used to identify
different types of climate years. To accomplish this, we delineated eroded side-slope and
deposition foot-slope areas within a GIS and calculated the normalized mean yield within
each of these sensitive areddg, 5c—e). When the yield of both the foot-slope and the
eroded side-slope was within 5% of the normalized field mean yield (i.e., >0.95 but <1.05),
we classified those years as “optimal” in precipitatidal{le 4. Three years fell into this
category (1993, 1995, and 1996), and the average yield of these years is shegurboh
Whentheyield of the foot-slope wa®9©5% of the field mean, then those years were classified
as “excessive” in precipitatiorkig. 5e shows the average yield of the 2 years (1998 and
2000) that fell into this category. When the yield of the eroded side-slope<®&%6 of
the field mean, then those years were classified as “deficit” (1994, 1997, 1999, 2001, and
2002), and the average of these 5 years is shoviaignSd. For this last class, yield of the
foot-slope averaged 15% higher than the field mean. Thus, five different sets of YPZ were
derived for Field 1 using the MZA unsupervised clustering. Yield productivity zones were
created for the 10-year medrig. 5a), 10-year S.D.Kig. %), deficit-years meark{g. &),
optimum-years meark{g. &d), and excess-years mead. 5e).

Field 2 did not exhibit an equivalent sensitive soil area in the foot-slope where “excessive”
moisture depressed yield. Near the uncropped grass waterway that divided the field into two
separate cropped areas, foot-slope positions generally yielded well over all years because,
unlike Field 1, these areas adequately drained excessive water following heavy rains. The
eroded side-slope position on Field 2 was, however, sensitive to different precipitation years.
In 1996, yield on the side-slope was similar to the rest of the field, following the “optimal”
moisture classification given to Field 1 for that same year. With only 1 year in the “optimal”
classification for Field 2, we chose to not create YPZ based on this year alone. In all other

Table 4

Mean normalized yields of the indicator landscape positions and resultant moisture classification

Field Year Deposition Eroded Moisture year

foot-slope mean side-slope mean classification

Field 1 1993 0.96 0.98 Optimum
1994 1.22 0.80 Deficit
1995 1.00 0.98 Optimum
1996 0.99 1.01 Optimum
1997 1.13 0.74 Deficit
1998 0.89 0.98 Excessive
1999 1.23 0.70 Deficit
2000 0.86 1.03 Excessive
2001 1.08 0.90 Deficit
2002 1.08 0.93 Deficit

Field 2 1996 1.26 1.16 Optimal
1997 1.47 0.34 Deficit
1998 1.16 0.95 Deficit
1999 1.58 0.75 Deficit
2000 0.98 0.92 Deficit
2001 1.22 0.95 Deficit

2002 1.47 0.45 Deficit
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Fig. 6. Field 2 yield maps used for developing reference yield productivity zones (YPZ): (a) 7-year mean, (b)
7-year S.D., and (c) deficit-years mean.

years (1997-2002), the pattern of decreased yield on the sensitive eroded side-slope was
evident (Table 4, and data from these years were averaged for a “deficit” year classification.
Thus, MZA was used to develop three sets of YPZ for Field 2: (1) 7-year ntégnéa),

(2) 7-year S.D.Fig. &), and (3) deficit-years meahif. 6c).

Growing-season precipitation expressed on a monthly besidd 1) did not necessarily
always follow the classification by sensitive soil areas. As an example, an individual storm
early in the season may have affected germination and stand, and yet precipitation the rest
of the season may not have been excessive.

Fig. 5. Field 1 yield maps used for developing reference yield productivity zones (YPZ): (a) 10-year mean, (b)
10-year S.D., (c) deficit-years mean, (d) optimum-years mean, and (e) excess-years mean. Small areas excluded
(shown as white blocks) were uncropped areas (weather station and ground water monitoring well nests) or four
<1ha areas used for fertility response studies on the north-west portion of the field.
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3.3. Summary of ECand elevation and creating SPZ (Step 2)

Maps of EG and elevation are shown for Field Ei§. 7) and Field 2 Fig. 8), and the
associated descriptive statistics are summarizéthble 5 Mean EG measurements for
Field 2 were notably greater than for FieldP:estP < 0.01), as a result of higher maximum
EC, values. The range in elevation of Field 2 is more than twice that of Field 1. Thus, the
higher EG from Field 2 can be attributed to steeper slopes (mean slope of 0.7% for Field
1 and 1.8% for Field 2) with the resulting erosion exposing the claypan horizon at the soil
surface in some areas. Also, a larger proportion of Field 2 had highvE@es than did
Field 1.

ECsfor claypan soil fields is strongly related to the thickness of topsoil above the claypan
horizon Kitchen et al., 1999 Areas of lower EG generally have over-washed sediment
that has buried the claypan to a depth as much as 1.2 m below the soil surface. In contrast,
areas of higher E£are associated with the claypan near or at the soil surface. Plant-available
water varies as a function of topsoil depth above the claypan and is a primary soil feature
influencing crop yieldKitchen et al., 1999; Thompson et al., 199Ratterns of variation in
EC, and yield are similar when visually comparing many of the yield mapsgd. 3 and 4
with the EG, maps ofFigs. 7 and 8

Unsupervised classification using MZA was performed on 19 different combinations of
EC, and elevation datarable 2 to generate SPZ (Step 2 Fig. 2).

3.4. Agreement between YZP and SPZ (Step 3)

The final step in the analysis (Step JFHiy. 2) matched all unique combinations of zones
between the two independent classifications, calculated measures of agreement, and ranked
the results. The ECand/or elevation variable combinations generating SPZ clustering
outcomes with the highest agreement to YPZ are repofiabolé¢ 6for Field 1; Table 7for
Field 2).

Agreement between Field 1 YPZ and SPZ was generally lower than agreement values for
Field 2 (no statistical test performed). One factor that likely contributed to lower agreement

Table 5

Descriptive statistics of EC and elevation data for the two study fields

Field Variable EG.sh ECa-dp ECaem Elevation

(mSntl) (mSnrd) (mSnrl)

Field 1 Mean D 200 300 2636
Minimum 42 5.2 206 2619
Maximum 227 460 429 2648
S.D. 26 7.7 30 0.6
Ccv 26.4 384 100 0.2

Field 2 Mean 164 259 358 2619
Minimum 7.3 71 196 2578
Maximum 402 577 592 2650
S.D. 67 100 57 22

Cv 405 387 159 0.8
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Fig. 7. Field 1 EGand elevation maps: (a) BGn (b) EGa.dp () EGe-em and (d) elevation. Small areas excluded
(shown as white blocks) were uncropped areas (weather station and ground water monitoring well nests) or four
<1 ha areas used for fertility response studies on the north-west portion of the field.
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Fig. 8. Field 2 EG and elevation maps: (a) BGh (b) ECGa.dp, (C) EGe.em and (d) elevation.
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values for Field 1 is the influence of historic management practices on yield variability. A
series of archived aerial photos obtained from the USDA Farm Service Agency show that
Field 1 was managed from the 1930s through the 1980s as smaller 6—8 ha fields running
in an east—west direction. Grid soil sampling for nutrient and pH mapping substantiates
soil differences coincident with the boundaries observed in the aerial photos (unpublished
data). While the 31 ha Field 1 has been uniformly managed as one field since 1990, yield
mapping has demonstrated that it is likely these soil differences associated with these his-
toric management boundaries continue to influence yield. Abrupt yield changes running
north—south provide evidence of the impact of historic management practices (especially
obvious in 1993, 1994, 1996-1998, 2001, and 2002 yield mapggo8). Similar but more
subtle east—west streaking patterns can also be seen in tranB@&levation maps$(g. 7).
Including some measure of temporal variation, either by adding yield standard devi-
ation as a cluster variable or by using sensitive soil areas to sort and average by types
of precipitation years, only slightly improved the measures of agreement for both fields
(Tables 5 and %6 Zones generated by E@nd elevation had the highest agreement with

Table 6

Spatial agreement between Field 1 YPZ and SPZ from unsupervised cluster analysis

Yield zone cluster variable(s) Soil zone cluster variable(s) Overall accuracy Kappa coefficient

10-Year mean ELsh ECa-gp, elevation 0.54 0.25
ECa.dp, elevation 0.53 0.24
Elevation 0.51 0.22
ECa-sHECa.ap elevation 0.54 0.22
ECqa-dpf/ECq-em €elevation 0.52 0.21

10-Year S.D. EG-sh ECa.ap, elevation 0.56 0.26
ECa.dp elevation 0.56 0.25
ECa-sHECa.gp elevation 0.58 0.23
ECa-sHECa-dp, 0.52 0.22
Elevation 0.53 0.21

Deficit-years mean Efsh ECa.gp elevation 0.60 0.34
ECa-sHECa.ap elevation 0.60 0.31
ECa.dp, elevation 0.58 0.31
Elevation 0.56 0.30
ECa-dp/ECa-em elevation 0.58 0.29

Optimal-years mean ELup 0.46 0.11
EC,-sHECa-em 0.43 0.10
ECa.em €levation 0.41 0.09
ECa-sHECa.ap elevation 0.44 0.08
ECi-sh 0.42 0.07

Excess-years mean &EGh ECa.ap, elevation 0.52 0.22
ECa.gp €elevation 0.52 0.22
ECa-sHECa.gp elevation 0.53 0.20
ECs-em €levation 0.49 0.20
ECa-df/ECa-em €elevation 0.51 0.18

Of the 19 combinations of soil EC and elevation considered Tabée 2, only the five with the highest Kappa
coefficient for each yield reference map are reported.
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Table 7

Spatial agreement between Field 2 YPZ and SPZ from unsupervised cluster analysis

Yield zone cluster variable(s) Soil zone cluster variable(s) Overall accuracy Kappa coefficient

7-Year mean EG€sHECa-dp ECa-em 0.68 0.43
ECa-em 0.65 0.40
ECa-dp, elevation 0.57 0.36
ECa.em, elevation 0.58 0.33
ECa-sh ECa-dp ECaem 0.57 0.33

7-Year S.D. EG-sHECa-dp ECaem 0.71 0.45
ECs-em 0.66 0.41
ECa-sh ECadp 0.59 0.34
ECa-sh ECa.dp ECacem 0.59 0.34
ECa-dp 0.57 0.32

Deficit-years mean ELSHECa-dp ECacem 0.72 0.49
ECa-em 0.67 0.42
ECa-sh ECadp 0.61 0.36
ECa-dp 0.59 0.36
ECa.dp, elevation 0.58 0.36

Of the 19 combinations of soil EC and elevation considered Tabée 2, only the five with the highest Kappa
coefficient for each yield reference map are reported.

reference yield zones derived from the “deficit” precipitation years. As might be anticipated,
Field 1 crop years that exhibited “optimal” precipitation produced the lowest measures of
agreement, and visually showed the least spatial similarity.

ForField 1, SPZ developed using a combination of 5CEC,._qp, and elevation variables
agreed best with reference YPZ (the exception being “optimal” years and here agreement
values were the lowest). Other combinations including the variablgsf€ ECy s/ECa.ap
were nearly as good. Top performing soil cluster combinations nearly always included the
elevation variable. Elevation alone was almost as good a variable for creating SPZ on this
field as it was in combination with EGrariables.

Field 2 SPZ created using BG{ECa.gp and EG.em had the highest agreement with
YPZ (Table 7. This combination was slightly better than using&&alone, and notably
higher than any of the other top performing variable combinations. Elevation was much
less useful for creating SPZ for Field 2 than it was for Field 1. We attribute this finding to
excessive water ponding in lower elevation areas of Field 1, causing crop stand problems.
Surface water drained well from Field 2 so ponding was not a problem.

In Figs. 9 and 10the YPZ maps are shown alongside maps of the top performing SPZ
maps. The patterns of the paired productivity maps were visually similar, particularly when
overall accuracy was about 0.60 or greater. However, visual differences were obvious even
for the paired maps with the highest agreement. For example, in Field 1 the most productive
zone derived from yield information was a much smaller area than the coinciding zone
derived from EG and elevation (compare the “deficit” years mean map to the matchgd EC
and elevation map). Some field characteristics obvious in YPZ were not distinguished with
zones from EGand elevation data. As an example, the perimeter of Field 2 often fell into
the low-yielding class for the YPZ. While some field edge yield data were removed in the
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Fig. 9. Field 1 reference yield productivity zone maps (top) compared to the best performing productivity zone
maps derived from unsupervised clustering o§B@d elevation (bottom). Yield by zones giveriliable 8 Small

areas excluded (shown as white blocks) were uncropped areas (weather station and ground water monitoring well
nests) or four <1 ha areas used for fertility response studies on the north-west portion of the field.
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Fig. 10. Field 2 reference yield productivity zone maps (left) compared to the best performing productivity zone
map derived from unsupervised clustering ofE@d elevation (right). Yield by zones givenTable 8
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Table 8
Mean normalized yield for YPZ and for the corresponding SPZ
Field Yield-based productivity zones Soil-based productivity zones
Cluster variable(s) Zone Mean Cluster variable(s) Zone Mean
Field 1 10-Year mean 1 0.92 BGh ECa.gp, elevation 1 0.96
2 0.99 2 0.99
3 1.07 3 1.03
10-Year S.D. 1 0.93 ELsh ECa-gp, elevation 1 0.96
2 1.01 2 0.99
3 111 3 1.03
Deficit-years mean 1 0.85 BGh ECa.dp elevation 1 0.91
2 1.00 2 0.99
3 1.19 3 1.08
Optimal-years mean 1 0.92 EGp 1 0.99
2 0.99 2 1.00
3 1.06 3 1.01
Excess-years mean 1 0.88 E& ECqa.qp, elevation 1 0.95
2 0.97 2 0.98
3 1.05 3 1.01
Field 2 7-Year mean 1 0.78 BGHECa-dp, ECa-em 1 0.83
2 1.03 2 1.01
3 1.23 3 1.20
7-Year S.D. 1 0.79 ELsHECa-dp ECaem 1 0.83
2 1.04 2 1.01
3 1.24 3 1.20
Deficit-years mean 1 0.76 BGHECa-dp, ECa-em 1 0.83
2 1.04 2 1.01
3 1.28 3 1.20

Results are provided for only the outcomes with the highest agreement, as sheigs. i@ and 10

yield cleaning process, this low-yielding edge effect on Field 2 remained and was due to
large trees bordering much of the field.

When comparing the within-zone average-normalized yield for the paired zones, the
reference yield zone with the lowest productivity (Zone 1) always exhibited lower yields
than the equivalent zone generated using, B@d/or elevationTable §. Similarly, the
reference yield zone with the highest productivity (Zone 3) always exhibited higher yields
than the equivalent zone generated using &l/or elevation.

4. Discussion
Many might contend that a database of multiple years of yield maps would be a re-

liable source for generating productivity management zones. Yet, significant questions
accompany this approach. How many years of maps are needed to represent long-term
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climate trends? Are the productivity patterns between different crops sufficiently similar

to group for analysis? How does one consider year-to-year changes in management prac-
tices? Has the yield monitoring system been regularly calibrated for optimal performance
and suspected erroneous Yyield data removed to provide quality maps? Might modern crop
varieties with new genetics perform differently than varieties of the past? The sum of all
these considerations represents for the producer considerable time and expense, and per-
haps still a degree of uncertainty for how to proceed to delineate productivity management
zones.

In contrast, soil properties that characterize infiltration, plant-available water storage,
and rooting conditions are usually temporally stable, but can be quite variable spatially.
These properties are a reflection of how soils form. Thus, others may argue that produc-
tivity management zones should rely on measurements that characterize these aspects of
the soil. Yet even here, some management activities (e.g., compaction, no-tillage) can alter
these properties over the course of years. The bigger issue has been finding an easy-to-
obtain and low-cost method (or methods) of soil and landscape measurements to provide
quality information about these properties. Apparent soil electrical conductivity is a rea-
sonable candidate because yield and; B@ve been shown to be related under condi-
tions of rainfed croppingJaynes et al., 1995; Kitchen et al., 2003; Lund et al., 200k
tested whether SPZ from easily obtained;E@d elevation measurements would be simi-
lar to YPZ created from the more difficult, time-consuming, and expensive yield-mapped
data.

Two contrasting data types (yield and g€levation), independently classed, produced
surprisingly good agreement; even in light of three clear factors. One, the sensors and meth-
ods used to obtain these two types of data are very dissimilar. The effects of the harvesting
combine as it cuts, cleans, and transports the grain to the storage bin result in yield data
from the monitoring system that is a moving average of yield rather than a spatially discrete
measurement. While usually less spatially-dense than yield data, ravaritiCelevation
data represent specific points on the field. Thus, these two data types have different levels
of spatial precision. Two, even though adjacent grid cells were spatially dependent for both
yield and EG (semi-variogram range of influence >30 m), spatial location was not consid-
ered in the analysis. We theorize agreement between the two different types of productivity
zones would have improved had we included some measure of location in the clustering
process. Another proven approach that would introduce a spatial factor would be to apply
an image-processing technique such as a “moving window” post-classification filter to re-
classify individual or small groups of isolated cells, creating more contiguous productivity
classesRing and Dobermann, 20p3 his type of procedure would smooth the “pixelated”
productivity zone maps iRigs. 9 and 10ultimately improving overall accuracy and Kappa
measures. Three, and perhaps most importantly, yield variability within fields is a function
of much more than those soil properties represented hyala@ elevation. Numerous other
soil (e.g., fertility, organic matter, temperature), biotic (weeds, insects, diseases), climatic
(e.g., humidity, temperature, solar radiation), and management influences (e.g., skipped or
run-over rows, field boundary treelines, historic variations in management) contribute in
varying degrees to within-field yield variability. In the future, process-based crop models
that accurately simulate numerous and interacting soil, climate, and management factors
could be the means by which management zones are delindatess(et al., 2003
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In comparing the two fields, Field 2 was a better candidate for creatingbB€ed
productivity zones. Variation in Eneasurements was greater and other prominent yield-
controlling factors (i.e., historical management) were less obvious when compared to Field
1. We find intriguing the combination of BGHEC,.gpand EG.emas this study’s best per-
forming group of classifying variables (Field 2), and deserving of additional investigation.
Another study has demonstrated that each of thesgrB€asurements provides unique
information in characterizing soil variabilitysQidduth et al., 2003

For Field 1, we believe the influence of elevation on yield explained why the top per-
forming EG and elevation cluster group was the same for both “deficit” and “excess” years.
Foot-slope areas with poor surface drainage showed stand and disease problems during wet
periods, but have deep topsoil that prevents water stress in dry periods. Only minor im-
provement was achieved by including temporal variation (S.D. or sorting years by sensitive
soil areas before clustering). More importantly, on each field, the best zone delineation for
“deficit” years used the same set of £&hd elevation variables as the zone delineation for
all years combined. We interpret this to mean that if the years of this study are represen-
tative of longer-term climate trends, water deficiency will have a dominant effect on yield
variability, and this characteristic should be considered when delineating productivity zones
for claypan soil fields.

5. Conclusions

Two Missouri claypan soil fields were investigated to answer the question of whether
EC, and/or elevation sensor data could be used to delineate zones that would be similar
to zones delineated from multiple years of yield maps. Our procedure treated both data
types independently in the zone delineation process. Best performing combinationg of EC
and elevation variables gave 60-70% agreement between YPZ and SPZ. We consider this
level of agreement promising, especially considering the fact that there exist many other
yield-limiting factors unrelated to the soil properties that affec Bad elevation. Multiple
EC, and elevation variables used to generate SPZ agreed better with YPZ for both fields.
Combinations of Egand/or elevation variables that gave highest agreement between YPZ
and SPZ were field specific. Contrasting results from the two fields indicated specific field
characteristics need to be taken into account when developing productivity zones. Field 1's
history of being managed prior to 1990 as a group of smaller fields seems to have caused
soil differences that impact yield variability more than a decade later.

Claypan soils have beenreferred to by farmers as “droughty” soils. Half of the yearsin this
dataset showed yield spatial variability caused by moisture deficiency. Because of the heavy
weighting from “deficit” moisture years, creating YPZ with only these years did not alter
the combination of Egand elevation variables that performed best as a surrogate estimator
of YPZ using all years. Additionally, the relationship of E&nd elevation measurements
to properties affecting plant-available water and landscape hydrology are most likely the
cause of the similarity between YPZ and SPZ. Based on these findings, we conclyde EC
and elevation measurements can be reliably used for creating productivity zones on claypan
soil fields.
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